Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Core-shell tin oxide, indium oxide, and indium tin oxide nanoparticles on silicon with tunable dispersion: electrochemical and structural characteristics as a hybrid Li-ion battery anode.

Identifieur interne : 000811 ( Main/Exploration ); précédent : 000810; suivant : 000812

Core-shell tin oxide, indium oxide, and indium tin oxide nanoparticles on silicon with tunable dispersion: electrochemical and structural characteristics as a hybrid Li-ion battery anode.

Auteurs : RBID : pubmed:23952971

English descriptors

Abstract

Tin oxide (SnO2) is considered a very promising material as a high capacity Li-ion battery anode. Its adoption depends on a solid understanding of factors that affect electrochemical behavior and performance such as size and composition. We demonstrate here, that defined dispersions and structures can improve our understanding of Li-ion battery anode material architecture on alloying and co-intercalation processes of Lithium with Sn from SnO2 on Si. Two different types of well-defined hierarchical Sn@SnO2 core-shell nanoparticle (NP) dispersions were prepared by molecular beam epitaxy (MBE) on silicon, composed of either amorphous or polycrystalline SnO2 shells. In2O3 and Sn doped In2O3 (ITO) NP dispersions are also demonstrated from MBE NP growth. Lithium alloying with the reduced form of the NPs and co-insertion into the silicon substrate showed reversible charge storage. Through correlation of electrochemical and structural characteristics of the anodes, we detail the link between the composition, areal and volumetric densities, and the effect of electrochemical alloying of Lithium with Sn@SnO2 and related NPs on their structure and, importantly, their dispersion on the electrode. The dispersion also dictates the degree of co-insertion into the Si current collector, which can act as a buffer. The compositional and structural engineering of SnO2 and related materials using highly defined MBE growth as model system allows a detailed examination of the influence of material dispersion or nanoarchitecture on the electrochemical performance of active electrodes and materials.

DOI: 10.1021/am4023169
PubMed: 23952971

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Core-shell tin oxide, indium oxide, and indium tin oxide nanoparticles on silicon with tunable dispersion: electrochemical and structural characteristics as a hybrid Li-ion battery anode.</title>
<author>
<name sortKey="Osiak, Michal J" uniqKey="Osiak M">Michal J Osiak</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, University College Cork, Cork, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Department of Chemistry, University College Cork, Cork</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Armstrong, Eileen" uniqKey="Armstrong E">Eileen Armstrong</name>
</author>
<author>
<name sortKey="Kennedy, Tadhg" uniqKey="Kennedy T">Tadhg Kennedy</name>
</author>
<author>
<name sortKey="Torres, Clivia M Sotomayor" uniqKey="Torres C">Clivia M Sotomayor Torres</name>
</author>
<author>
<name sortKey="Ryan, Kevin M" uniqKey="Ryan K">Kevin M Ryan</name>
</author>
<author>
<name sortKey="O Dwyer, Colm" uniqKey="O Dwyer C">Colm O'Dwyer</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2013">2013</date>
<idno type="doi">10.1021/am4023169</idno>
<idno type="RBID">pubmed:23952971</idno>
<idno type="pmid">23952971</idno>
<idno type="wicri:Area/Main/Corpus">000456</idno>
<idno type="wicri:Area/Main/Curation">000456</idno>
<idno type="wicri:Area/Main/Exploration">000811</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electric Power Supplies</term>
<term>Indium (chemistry)</term>
<term>Ions (chemistry)</term>
<term>Lithium (chemistry)</term>
<term>Nanoparticles (chemistry)</term>
<term>Silicon (chemistry)</term>
<term>Tin Compounds (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Indium</term>
<term>Ions</term>
<term>Lithium</term>
<term>Silicon</term>
<term>Tin Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanoparticles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electric Power Supplies</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tin oxide (SnO2) is considered a very promising material as a high capacity Li-ion battery anode. Its adoption depends on a solid understanding of factors that affect electrochemical behavior and performance such as size and composition. We demonstrate here, that defined dispersions and structures can improve our understanding of Li-ion battery anode material architecture on alloying and co-intercalation processes of Lithium with Sn from SnO2 on Si. Two different types of well-defined hierarchical Sn@SnO2 core-shell nanoparticle (NP) dispersions were prepared by molecular beam epitaxy (MBE) on silicon, composed of either amorphous or polycrystalline SnO2 shells. In2O3 and Sn doped In2O3 (ITO) NP dispersions are also demonstrated from MBE NP growth. Lithium alloying with the reduced form of the NPs and co-insertion into the silicon substrate showed reversible charge storage. Through correlation of electrochemical and structural characteristics of the anodes, we detail the link between the composition, areal and volumetric densities, and the effect of electrochemical alloying of Lithium with Sn@SnO2 and related NPs on their structure and, importantly, their dispersion on the electrode. The dispersion also dictates the degree of co-insertion into the Si current collector, which can act as a buffer. The compositional and structural engineering of SnO2 and related materials using highly defined MBE growth as model system allows a detailed examination of the influence of material dispersion or nanoarchitecture on the electrochemical performance of active electrodes and materials.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23952971</PMID>
<DateCreated>
<Year>2013</Year>
<Month>08</Month>
<Day>29</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>03</Month>
<Day>17</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1944-8252</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>16</Issue>
<PubDate>
<Year>2013</Year>
<Month>Aug</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>ACS applied materials & interfaces</Title>
<ISOAbbreviation>ACS Appl Mater Interfaces</ISOAbbreviation>
</Journal>
<ArticleTitle>Core-shell tin oxide, indium oxide, and indium tin oxide nanoparticles on silicon with tunable dispersion: electrochemical and structural characteristics as a hybrid Li-ion battery anode.</ArticleTitle>
<Pagination>
<MedlinePgn>8195-202</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/am4023169</ELocationID>
<Abstract>
<AbstractText>Tin oxide (SnO2) is considered a very promising material as a high capacity Li-ion battery anode. Its adoption depends on a solid understanding of factors that affect electrochemical behavior and performance such as size and composition. We demonstrate here, that defined dispersions and structures can improve our understanding of Li-ion battery anode material architecture on alloying and co-intercalation processes of Lithium with Sn from SnO2 on Si. Two different types of well-defined hierarchical Sn@SnO2 core-shell nanoparticle (NP) dispersions were prepared by molecular beam epitaxy (MBE) on silicon, composed of either amorphous or polycrystalline SnO2 shells. In2O3 and Sn doped In2O3 (ITO) NP dispersions are also demonstrated from MBE NP growth. Lithium alloying with the reduced form of the NPs and co-insertion into the silicon substrate showed reversible charge storage. Through correlation of electrochemical and structural characteristics of the anodes, we detail the link between the composition, areal and volumetric densities, and the effect of electrochemical alloying of Lithium with Sn@SnO2 and related NPs on their structure and, importantly, their dispersion on the electrode. The dispersion also dictates the degree of co-insertion into the Si current collector, which can act as a buffer. The compositional and structural engineering of SnO2 and related materials using highly defined MBE growth as model system allows a detailed examination of the influence of material dispersion or nanoarchitecture on the electrochemical performance of active electrodes and materials.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Osiak</LastName>
<ForeName>Michal J</ForeName>
<Initials>MJ</Initials>
<Affiliation>Department of Chemistry, University College Cork, Cork, Ireland.</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Armstrong</LastName>
<ForeName>Eileen</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kennedy</LastName>
<ForeName>Tadhg</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Torres</LastName>
<ForeName>Clivia M Sotomayor</ForeName>
<Initials>CM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ryan</LastName>
<ForeName>Kevin M</ForeName>
<Initials>KM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>O'Dwyer</LastName>
<ForeName>Colm</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>08</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>ACS Appl Mater Interfaces</MedlineTA>
<NlmUniqueID>101504991</NlmUniqueID>
<ISSNLinking>1944-8244</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Ions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Tin Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>045A6V3VFX</RegistryNumber>
<NameOfSubstance>Indium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>18282-10-5</RegistryNumber>
<NameOfSubstance>stannic oxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4OO9KME22D</RegistryNumber>
<NameOfSubstance>indium oxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>71243-84-0</RegistryNumber>
<NameOfSubstance>indium tin oxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9FN79X2M3F</RegistryNumber>
<NameOfSubstance>Lithium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Z4152N8IUI</RegistryNumber>
<NameOfSubstance>Silicon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Electric Power Supplies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Indium</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Ions</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Lithium</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Nanoparticles</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Silicon</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Tin Compounds</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2013</Year>
<Month>8</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1021/am4023169</ArticleId>
<ArticleId IdType="pubmed">23952971</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000811 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000811 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23952971
   |texte=   Core-shell tin oxide, indium oxide, and indium tin oxide nanoparticles on silicon with tunable dispersion: electrochemical and structural characteristics as a hybrid Li-ion battery anode.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23952971" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024